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Abstract 

Goursat distributions – subbundles in the tangent bundles to manifolds having 
the tower of consecutive Lie squares growing very slowly in ranks, always only 
by one – possess, from corank 8 onwards, numerical moduli of the local 
classification up to diffeomorphisms of base manifolds. (Up to corank 7 that 
classification is finite.) The number of such moduli grows with the corank, i.e., 
with the length of a tower. Yet there are no other (more involved, e.g., 
functional) moduli of the local classification. A natural question, asked by 
Agrachev in the year 2000, is whether those numerical moduli descend to the 
level of nilpotent approximations: whether they are resistant enough to survive 
the passing to the nilpotent level. A surprising negative result in this direction 
was obtained in [21]; it dealt with a Goursat modulus appearing in codimension 
three, in corank (or length) 8. In the present work, we show that it is likewise – 
a modulus disappears on the nilpotent level – for the first Goursat modulus 
found, [19], in codimension two (i.e., in the smallest possible codimension, 
classification in codimension one, [17], being discrete). 
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1. Introduction 

We want to use throughout the present work several notions related 
to the nilpotent approximations of geometric distributions. They can be 
viewed as a far reaching generalization of the notion of linearization of a 
single vector field. The linearization of a vector field v at a point, 
although simplifying geometry a big deal, retains some basic local 
properties of v. Likewise, the nilpotent (or graded, or homogeneous) 
approximations simplify enormously the geometry of distributions 
without losing the most essential (mainly nonholonomic) traits of them. 

In a coordinate language, first steps bringing those objects to 
existence were made in [8] (cf. also [9]) and decisive ones in [3], [2], [7], 
with substantial later simplifications proposed in [6]. Local coordinates in 
which nilpotent approximations can be viewed (something like night 
glasses in nonholonomic geometry) have a separate history of their own. 
They are useful in sub-Riemannian geometry, too, from the basic 
(nonholonomic) Ball-Box Theorem onwards – see [6], as well as the entire 
book Sub-Riemannian Geometry containing that contribution. 
Paraphrasing Sussmann’s contribution to that book, a cornucopia of 
various possible sets of adapted (or privileged) coordinates is astonishing. 
We hope that the papers [21] and the present give some evidence to this 
statement. On the other hand, one can try to approach all sets of 
privileged coordinates at once – in an appropriate high level abstract 
algebra language, as it is proposed in [10]. 

On the coordinate-free side, there exists a key (if not published) short 
text [1] and a contribution [4], followed later by a referential work [5]. 
Yet another approach, highly algebraized and not widely known, is 
presented in [11]. 

The adjective ‘nilpotent’ is related to the fact that, whatever local 
generators of a given distribution D, the simplified (or trimmed) 
generators of the approximation around a point, say, p generate a 
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nilpotent Lie algebra, over the reals, of precisely known nilpotency order 
stemming from the geometry of D in the vicinity of p – equal to the 
nonholonomy degree of D at p. (Note that in [4] and [5] offered are 
alternative explanation and interpretation of nilpotent approximations, 
making use of the concept of nonholonomic tangent spaces. Our approach, 
however, which sharpens an effective general procedure in [6], seems 
suited best for concrete computations.) In the present paper, we will 
systematically use the abbreviation NA for ‘nilpotent approximation’. 

An ideal environment for these directions of research seems to be the 
world of Goursat distributions. On the one side, they are very tight and 
possessing clear polynomial presentations. Among others, they are free of 
functional moduli. On the other side, are abundant with numeric moduli, 
found not earlier than in the end of XX century. In fact, the very question 
of descending of moduli of Goursat objects to the nilpotent level was 
asked by Agrachev in the year 2000 and has since sparked an entire line 
of work, including [18], [20], and [21].  

Out of these three works, only the last one raises directly the issue of 
hypothetical surviving of moduli after descending to the simpler level of 
NAs. In fact, it deals with the only geometric class in corank (or – the 
same thing for Goursat – length) 8 concealing a modulus. That class is 
labelled GGSGSGSG in the ‘GST’ language described in detail in [19] and 
recapitulated in Section 3 of the present paper.1 The class dealt with in 
[21] may thus be seen as chosen somehow optimally. And the message of 
that contribution is that, despite strong opposite expectations, the 
modulus sitting in GGSGSGSG does not descend to the NA level. Quite a 
lot of surprising algebra stands behind such a result and the technique 
needed for it has turned out to be heavy. 

                                                      
1In smaller lengths, the local classification is discrete, as explained in a series of 

papers, the last among them being [16]. 
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The class discussed in [21] has, however, one serious deficiency. Its 
codimension is three – it displays three letters S in its code, cf., for 
instance, Proposition 2 in [19]. While the moduli of Goursat distributions 
are not confined to codimensions three and higher. They exist also in 
codimension two; this is explained in [19]. (And they do not exist in 
codimension one, [17].) Those coarser codimension-two moduli occur, it is 
true, at the expense of increasingly high flag’s length, at least 9 in the 
occurrence. In fact, in that threshold length, there exists just one 
codimension-two geometric class 

GGGSGSGGG,   (1) 

which hosts a modulus of the local classification. The present work 
addresses precisely this class. Germs sitting in (1) are visualised, in 
certain proper coordinates originating from [13] and [19], under the form 
(4) displayed later on. There are two real parameters, b and c, in that  
pre-normal form. They conceal a single modulus – the quantity −− bc 7  

2
3
5 b  derived and discussed in [19]. 

The first and main aim of the paper is to show, in our Theorem 2, 
that the modulus in (1) does not descend to the nilpotent approximations 
as well, exactly as it has been the case in [21]. Practically, all NAs of the 
objects in the family (4) will be computed to the very end and will turn 
out not to depend on b or c. They will be just one thing. 

An important corollary – and the second aim of the paper – of the 
technics of proving Theorem 2 is that a vast standing conjecture 
concerning nilpotent properties of Goursat distributions, put forward 
more than 10 years ago in [18], is being confirmed in the class (1). See 
Theorem 3 in Subsection 4.3 for details. 
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2. Nilpotent Approximation of a Distribution at a Point 

For any distribution D of rank d on an n-dimensional, smooth or real 
analytic, manifold M (i.e., a rank-d subbundle in the tangent bundle TM) 
its small flag is the nested sequence 

,4321 "⊂⊂⊂⊂ VVVV  

of modules (or presheaves of modules) of vector fields, of the same 
category as M, tangent to [ ]jjj VDVVDVM ,,: 11 +== +  for ,1=j  

.,2 …  The small growth vector at Mp ∈  is the sequence ( )jn  of linear 

dimensions at p of the modules ( ).dim: pVnV jjj =  Naturally, dn =1  

independently of p. 

D is completely nonholonomic when at every point of M its small 
growth vector attains (sooner or later) the highest value .dim Mn =  We 
truncate that vector after the first appearance of n in it. The length NHd  
of the truncated vector is called the nonholonomy degree of D at p. 

In the theory that we only sketch here (cf. [8], [2], [7], [6]; this list is 
not complete) important are the weights iw  related to the small flag at a 
point: 2,1 211 ====== + ndd wwww ""  (no value 2 among them 

when ( )),12 dnn ==  and generally, 

,111 +===
++ jww jj nn "   (2) 

(no value 1+j  among the w’s when 1+= jj nn ) for .,2,1 …=j  

Definition. For a completely nonholonomic distribution D on M, 
coordinates nzzz ,,, 21 …  around Mp ∈  (centered at p) are linearly 
adapted at p when ( ) ( ) ( ) ( ),,,,,,,, 2121 ndd pVpD ∂∂∂=∂∂= ………  

and so on until ( ) ( ) .,,1NH MTpV pnd =∂∂= …  (Throughout we use the 

shorthand notation .jj z∂∂=∂  Here and in the sequel, we also skip 

writing ‘span’ before a set of vector fields’ generators.) 

For such linearly adapted coordinates one defines, as in [6], their 
weights ( ) .,,1, niwzw ii …==  
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On the other hand, given a completely non-holonomic D, every 
smooth function f on M has, at any point ,Mp ∈  its nonholonomic order 

nord(f ) with respect to D (for simplicity of notation, we skip writing its 
dependence on p). By definition, it is the minimal order of a 
nonholonomic derivative of f that is non-zero at p.2 

It follows directly from the above definitions that, for linearly 
adapted coordinates, their nonholonomic orders do not exceed their 
weights. 

Definition. Linearly adapted coordinates nzz ,,1 …  are adapted 

when ( )iznord  equals ( )izw  for .,,1 ni …=  

It is rather laborious to show, but adapted coordinates always exist, 
see in this respect, to name just some, [2], [7], [6]. Moreover, they are by 
far not unique; there remains plenty of freedom behind the requirement 
being imposed on linearly adapted coordinates that the nonholonomic 
orders be maximal possible. 

In adapted coordinates, it is reasonable to attach quasi-homogeneous 
weights also to monomial vector fields (this definition goes back to the 
work [22] in the theory of differential operators; for geometric 
distributions, see in this respect [2], p. 215). Namely, 

( ) ( ) ( ) ( ).11 jiijii zwzwzwzzw −++=∂ kk ""   (3) 

The gist of the concept of adaptedness resides in the following: 

Proposition 1. Every smooth vector field X with values in D has in 
its Taylor expansion, in any coordinates adapted for the relevant germ of 
D, only terms of weights not smaller than –1 that can be grouped in 

homogeneous summands ( ) ( ) ( ) .101 "+++= − XXXX   

                                                      
2 +∞  is not excluded. 
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(Superscripts mean the weights defined by (3).) We denote by lX  the 

lowest (‘(–1)-jet’, ‘nilpotent’) summand ( ).1−X  That is, l ( )1 .X X −=  

When a distribution D has around p local generators (vector fields) 
,,,1 dXX …  then 

Definition [6, Definition 5.15]. ( )  The distribution l ( m m )1, , ,dD X X= …  

defined on M locally around p, is called the nilpotent approximation of D 
at p. 

( )  It is proved in Proposition 5.20 in [6] that lD  is well-defined, 

independently of the adapted coordinates that are being used. More 
precisely, the NA of D at p is to be understood as the equivalence class of 

distributions ( m m )1, , dX X…  constructed above by means of all possible 

sets of adapted coordinates, with the equivalence relation described in 
the proof of that proposition in [6]: One conjugates the quasi-homogeneous         
(–1)-terms of vector fields by means of the trimmed diffeomorphisms, 
having, for ,,,2,1 ni …=  in their i-th component only the terms of 

quasi-homogeneous weight exactly .iw  

( )  Alternatively, this class lD  of weighted degree –1 distribution 

germs is called the (–1)-jet of D at p. 

So, ‘the NA’ and ‘the (–1)-jet’ are just synonyms in the category of 
completely nonholonomic distributions. But – important – in any concrete 
situation, the NA of D at p is being visualised in one given set of adapted 

coordinates as a distribution germ at .0 nR∈  It is then, strictly 

speaking, just one of the representatives of l,D  watched not on M, but 

rather in a good chart around .0 nR∈  
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The basic property of the nilpotent approximation is 

Proposition 2. At the reference point p, the small flag of lD  coincides 

with that of D at p. Hence lD  has at p the same small growth vector as D 
at p (and, in particular, the same nonholonomy degree ,NHd  too). 

This property is crucial. It shows that, in the occurrence, much 
simpler objects retain some basic geometric characteristics of the initial 
objects. One can fairly deeply trim a distribution germ without losing 
essential information! This opportunity can only support one’s hope for 
the survival of moduli in nilpotent approximations. 

Attention. There is, however, one warning pointing in the opposite 
direction: unlike the small growth vector at the reference point, the big 
growth vector of a distribution D at a point (the sequence of linear 
dimensions at a point of the members of the big flag of D – the tower of 
modules of vector fields – consecutive Lie squares [ ] [[ ],,, DDDDD ⊂⊂  

[ ]] )"⊂DD,  is, generally speaking, not preserved under passing to the 

(–1)-jet of D at that point. See in this respect, Theorem 3 in Subsection 
4.3 and also pp. 258-259 in [18]. Building on the ulterior machinery, the 
proof of Theorem 3 exploits that poor performance of the big flag also for 
the NAs of germs in the class (1). 

Note in parentheses that all germ’s geometric properties are 
preserved under the NA functor only at so-called strongly nilpotent 
points of the underlying manifold (cf. [18]). Consequently, there will be 
no such points in the class (1). 

3. Kumpera-Ruiz Normal Forms for Goursat Distributions 

In what follows, we deal uniquely with Goursat distributions – a 
rather restricted class of objects for which preliminary (local) polynomial 
normal forms of [13] exist with real parameters only, and no functional 
moduli. 
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A distribution TMD ⊂  is Goursat when it is rank-2 and the big 
growth vector of D is, at every point ,Mp ∈  just [ ],,1,,4,3,2 nn −…  

where .4dim ≥= Mn  The number 22 ≥−n  is called the length of the 
[big] flag of D. (Sometimes the assumption 2, =Drk  is being dropped in 

this definition, like, for instance, in [14] and [19]. Both variants locally 
lead to the same theory, because there always splits off an integrable 
corank-2 sub-distribution in D. In fact, that splitting object is the 
Cauchy-characteristic sub-distribution of D.) 

There exists a very basic partition of Goursat germs of corank n into 
disjoint geometric classes encoded by words of length 2−n  over the 
alphabet G, S, T, with two first letters always G and such that never a T 
goes directly after a G. Their construction has its roots in the pioneering 
work [12] of Jean, in which the author used a trigonometric, not 
polynomial, presentation of Goursat objects. That construction, with 
some natural subsequent improvements, has been reproduced in detail in 
Subsection 1.1 of [19].3 

In dimension 4, there is but one class GG, in dimension 5 – only GGG 
and GGS, in dimension 6 – GGGG, GGSG, GGST, GGSS, GGGS. 

The union of all geometric classes (‘quarks’) of fixed length with 
letters S in fixed positions in the codes is called, after [14], a Kumpera-
Ruiz class (a ‘particle’) of Goursat germs of that corank. For instance, in 
dimension 6, the two geometric classes GGSG and GGST build up one KR 
class .S ∗∗∗  In dimension 7, the geometric classes GGSGG, GGSTG, 
and GGSTT build ,∗∗∗∗ S  etc. (This appellation is a bit misleading, for 
the authors of [13] went, in medium size dimensions 6 and 7, well beyond 
the bare KR classes.) 

                                                      
3It should be noted that, in the meantime, Montgomery and Zhitomirskii have 

developed, in a big contribution [15], a yet different notation for the same geometric classes, 
or, better, Jean’s strata. They skip in the words the two leftmost letters G (the words thus 
become of length 4−n ) and translate .VS,RG →→  The letters T remain unchanged in 
the encoding words. The new name for the strata is ‘RVT classes’. 
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What are the mentioned polynomial (local) presentations of Goursat 
objects? The essence of the contribution [13], given in the language of 
vector fields and taking into account several posterior works, is as 
follows. One constructs first a (not unique, depending on a number of real 

parameters) rank-2 distribution on ( ( ) )0,,,1 nn xx …R  departing from 
the code of a geometric class .C  

When the code starts with precisely s letters G, one puts ,1
1

∂=Y  

.,, 1
21

2
312

+
+

+
∂+=∂+= s

sss
xYYxYY …  When ,2−< ns  then the ( )1+s  

letter in C  is S. More generally, if the m-th letter in C  is S, and 
m
Y  is 

already defined, then 

.1
21

+
+

+
∂+= m

mmm
YxY  

But there can also be T’s or G’s after an S. If the m-th letter in C  is not S, 

and 
m
Y  is already defined, then  

( ) ,1
221

+
++

+
∂++= m

mmmm
xcYY  

where a real constant 2+mc  is not absolutely free, but 

● equal to 0 when the m-th letter in C  is T, 

●● not equal to 0 when the m-th letter is G going directly after a string 
TST…  (or after a short string S). 

Now, on putting n∂=X  and ,
1−

=
n
YY  and understanding ( )YX,  as 

the germ at ,0 nR∈  we have 

Theorem 1 ([13]). Any Goursat germ D on a manifold of dimension n, 
sitting in a geometric class ,C  can be put (in certain local coordinates) in 
a form ( )YX,=D  specified above, with certain constants in the writing 

of the field Y corresponding to G’s past the first S in C  and subject to ● 
and ●●. 
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This will be the main reference point in the remaining of the paper. 

4. Nilpotent Approximation in the Geometric  
Class GGGSGSGGG 

Our aim is to prove the following: 

Theorem 2. The modulus of the local classification residing in the 
geometric class GGGSGSGGG disappears on the level of nilpotent 
approximations. That is, the nilpotent approximations of the members of 
this class are all equivalent. 

Our proof will focus on finding certain adapted coordinates, in order 
to get hold of the NAs of the Goursat germs in the class (4). The obtained 
NAs will – for a time – be illegible. A special care in the concluding part 
of the proof will be taken to make them legible and even – in suitable 
super-adapted coordinates depending on a germ – all of them identical. 

4.1. Proof of Theorem 2, main part 

To get started, let us write the Kumpera-Ruiz visualisations for the 
germs in (1) in the form emerging from the Section 2 in [19]. We mean 

taking 4=k  there, momentarily normalizing the constants 7c  and 9c  to 

1 (easy), and then writing for simplicity b instead of 10c  and c instead of 

.11c  In fact, in these K-R coordinates, 

( ) ( 5
8

4
568

3
468

2
368

1
68

11,, ∂+∂+∂+∂+∂∂== xxxxxxxxxxxxD YX  

),10
11

9
10

8
9

76
78 ∂+∂+∂+∂+∂+ XXXXx  (4) 

as the germ at ,0 11R∈  where ,,1,1 10109977 xbXxXxX +=+=+=  

,,1111 R∈+= bxcX  and .R∈c  These preliminary two-parameter 

normal forms are not exact local models; the parameter b is redundant 
and could be eliminated. As to the numerical invariant residing in the 

class (1), in terms of (4), it is 2
3
57 bbc −−  — see Corollary 3 in [19]. 

(With ,0=b  it would be, naturally, just c.) 
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It follows from the results of the benchmark paper [12] (or can be 
computed, with some effort, by hand) that the small growth vector of (4) 

at 110 R∈  is, regardless of the values of b and [ ,8,7,6,5,4,3,2, 22c  

],11,10,9 44  and hence the weights 1121 ,,, www …  are 

.18,14,10,8,6,5,4,3,2,1,1   (5) 

Because of the constants, the KR variables used in (4) are not yet linearly 
adapted. After some Lie bracket computations with the vector generators 

displayed in (4), one quickly improves the coordinates ix  to linearly 
adapted coordinates 

.,,,,,,,,,, 23415657879710711 xxxxxxxxxbxxcxxxx −−−−   (6) 

It is well known – see Section 2, and compare also [8], [9] – that linearly 
adapted coordinates are in general rather coarse and far from fitted for 
computing the NAs. Their upgrading to [certain, just certain] adapted 
coordinates is critical. The first seven adapted coordinates iz  

( )7,,2,1 …=i  are prompted by (4) and (6) directly. Proceeding much 

like in [20], one nearly comes across 

( ) ,2,,, 2779
4

710
3

7
2

11
1 xcbxxzcxxzxzxz −−=−===  

( ) ( ) ( ) ( ) ( ) ,2462
1,62

4737275
6

372778
5 xcxbxxzxcxbxxz −−−=−−−=  

( ) ( ) ( ) .3083
1 57473756

7 xcxbxxxz −−−−=  

It is important that in these coordinates: ( ) ( ) 0,11 == izz XX  for ,2=i  

,7,,3 …  and 

( ) ( ) ( ) ( ) ,,,1,0 341321 zzzzzz ==== YYYY  

( ) ( ) ( ) .,, 5275645 zzzzzzz === YYY  (7) 
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♦ It is less straightforward to improve 1x  to an adapted .8z  (The 

bare linearly adapted 1x  does not do, because 

( ) 




 +++== 3

2
2
2

3
25

681
26 zzbzczxxxY  

,2
1

6243
1

830
2
2

3
2

4
26

3
2

4
2

5
27 





 +++++++ zzbzczzzbzcz   (8) 

and, after expanding the RHS out, there appears a fan of unnecessary 

terms of nord .6≤ ) Fortunately, though, refining 1x  to 6
2
2

1
2
1 zzx −  

eliminates two nasty terms 62zz  and 5
2
22

1 zz  of nonholonomic order 6 on 

the RHS of (8) at a time, and now 

( ) 5
3
26

2
2726

2
2

1
63

1
28nordofterms2

1 zzbzzbzzzzx 




 ++++≥=





 −Y  

( ).,,,,ofncombinatioa 3
2

4
2

5
2

6
2

7
2 zzzzz+  

By adding the relevant polynomial of degree 8 in the single variable ,2z  

it is quick to eliminate the 3rd, 4th, ... up to the 7th powers of 2z  in the 

expansion above (we omit for clarity the exact expressions for the 
coefficients, which are not used further). By consequence, the variable 

( ),,,,,ofncombinatioduea2
1 4

2
5
2

6
2

7
2

8
26

2
2

1
8 zzzzzzzxz +−=  (9) 

is linearly adapted of nord [nonholonomic order] at least 8, that is, 
adapted (and its nord is exactly 8). In fact, ( ) ,08 =zX  and 

( ) ( ).8nordofterms63
1

2 5
3
26

2
2728 ≥+





 +++= zzbzzbzzzY  (10) 

Note that in this simplification, apart from the terms of quasi-

homogeneous degrees smaller than 7, also the ( )1
2

7
2 8 −= wzz  term has 

been eliminated. This was done on purpose, to make the further parts of 
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the proof more transparent. (Similar simplifications will be done with the 

remaining coordinates 234 ,, xxx  with no additional comment, so as to 

have no pure powers of 2z  whatsoever in a preliminary presentation of 

the NA.) 

♦ Upgrading of .4x  We know that 

( ) ( ) ( ) ( ) ,2
1

624
2
2

3
2

4
26

1515684 




 +++=== zzbzczxxxxxxx YYY  

where ( )1xY  is already expressed in the z variables – see (8) above. After 

expanding the RHS, there appear 

● terms of nord ;10≥  

● terms of nord 9, excepting ,9
2z  which are going to be important for 

the NA; 

● two particular mixed terms of nord ;4
1:8 5

4
26

3
2 zzzz +  

● the pure powers 5
2

6
2

7
2

8
2

9
2 ,,,, zzzzz  with precisely known coefficients. 

We get rid of the couple of mixed terms again by a single correction 

,4
1

6
4
2 zz−  after which there only remains to find a proper polynomial of 

degree 10 in 2z  doing the job of eliminating the listed powers of .2z  This 

time the coefficients in that polynomial are important in what follows 

because the variable in question, ,4x  enters the expression for ( )3xY  

discussed shortly later. (It has not been so with the variable ,1x  earlier 

upgraded to .8z ) After the due computation, the variable 

,24
1

4
1 10

210
9
29

8
28

7
27

6
26

4
2

4
9 zdzdzdzdzzzxz −−−−−−=  (11) 
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where 

● ,24
1

42
1

7 bd +=  

● ,72
1

96
1

1152
29 2

8 bcbd ++=  

● ,648
1

2592
23

144
1

1080
7 32

9 bbbccd +++=  

● ,4320
5

960
1

5760
5

17280
79 232

10 cbbcbcd +++=  

is linearly adapted of nord ≥  10, hence of nord equal to 910 w=  and 

adapted as such. As to its nonholonomic derivatives in the X and Y 
directions, ( ) ,09 =zX  and 

( ) ( ).10nordofterms66
1

6
5

3
1

2
1

5
5
26

4
27

3
29 ≥+





 ++





 ++= zzbzzbzzzY  

(12) 

♦Upgrading of .3x  The pattern of computation is clear. Adjoining the 
formula (11) to the pool of relations defining our ‘smoother’ variables z’s 
out of the more ‘coarse’ x’s, and knowing now the components−∂∂ jz  of 

Y for ,10<j  one perturbes 3x  so as to guarantee that the nonholonomic 

order of a perturbed function be equal to .1410 =w  One embarks, with 

(11) at hand, from the initial equality  

   ( ) ( ) ( ) 414683 xxxxxx YY ==  

( ) .24
1

4
1 10

210
9
29

8
28

7
27

6
26

4
29

1 




 ++++++= zdzdzdzdzzzzxY  

Having (8), after expanding out the RHS here, there emerge 
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● terms of nord ;14≥  

● terms of nord 13, excepting ,13
2z  which are important for the NA; 

● two particular ‘nasty’ terms of nord ;48
1

6
1:12 5

8
26

7
2 zzzz +  

● the powers 9
2

10
2

11
2

12
2

13
2 ,,,, zzzzz  with precisely  known coefficients. 

It is possible to kill here the 13
2z  term and all terms of nord ,12≤  

including the stubborn binomial which, again, will be killed by a single 
correction term. In fact, after a due computation, the variable 

,480
1

48
1 14

214
13
213

12
212

11
211

10
26

8
2

3
10 zdzdzdzdzzzxz −−−−−−=  (13) 

where 

,22
1

3168
5

792
1

711 dbd ++=  

,144
5

24
1

36
1

3456
1

2304
1

6912
7

787
2

12 bdddbcbd +++++=  

7789
2

13 104
1

312
7

39
1

26
1

44928
7

4992
1

3510
1 cdbdddbcbcd ++++++=  

,156
1

156
5

7
2

8 dbbd ++  

8798
2

14 112
1

315
2

168
5

336
7

48384
1

8960
1 cdcdbdbdcbcd +++++=  

,28
1

42
1

288
1

168
1

224
1

10978
2

7
2 ddbcddbdb +++++  

is linearly adapted of nord ,14≥  hence of nord equal to .14 10w=  As to 

the nonholonomic derivatives of ( ) ,0, 1010 =zz X  while 

( ) 5
9
276

8
277

7
29

3
210 2

1
14472

1
812

1
24
1

2
1 zzdbzzdbzzzzz 





 +++





 ++++=Y  

( ).14nordofterms ≥+   (14) 
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♦ Upgrading of the last variable .2x  The overall pattern of 
computation does not change. One adjoins the formula (13) to the pool of 
relations defining new variables z’s in terms of the old x’s, and now knows 
the components−∂∂ jz  of the fields X and Y for all .11<j  Then tries to 

perturb 2x  so as to make sure that the nonholonomic order of an outcome 
function be at least 1811 =w  (hence equal to 18), and that its                   

Y-derivative be .free-17
2z  Unsurprisingly, the key to it lies in the equality 

( ) ( ) ( ) ( ),1075
3682 ……… +++== zzzxxxxY  

where the last factor on the RHS features the old coordinate 3x  now 
written, by means of (13), in the jz  variables, .11<j  (Clearly, 11z  is 

absent yet, it is to be defined soon.) After opening the brackets on the 
RHS here, there appear 

● terms of nord ;18≥  

● terms of nord 17, excepting −17
2z  the only important for the NA in 

sight; 

● two particular mixed terms of nord ;960
1

80
1:16 5

12
26

11
2 zzzz +  

● the powers 13
2

14
2

15
2

16
2

17
2 ,,,, zzzzz  with all coefficients effective. 

The distinguished binomial will disappear after subtracting a single 

(again!) term from ,2x  while the listed pure powers of 2z  are, invariably, 

easy to get rid of. After a count of coefficients, the variable 

,13440
1

960
1 18

218
17
217

16
216

15
215

14
26

12
2

2
11 zdzdzdzdzzzxz −−−−−−=  

(15) 

with 15d  through 18d  being certain effective constants depending on b 

and c, whose exact expressions do not matter for the course of proof, is 
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adapted. Indeed, its X-derivative is zero, while its Y-derivative features 
only terms of nonholonomic orders 17 and higher, so that nord ( ) 1811 =z  

11w=  as needed. In fact, 

( ) 6
12
2117

11
210

3
211 720

7
144

1
480
1

2
1 zzdbzzzzz 





 ++++=Y  

( ).18nordofterms2
1

28801440
1

5
13
211 ≥+





 +++ zzdb  (16) 

We have at last produced a full set of privileged coordinates .,,, 1121 zzz …  

The first seven of them have been ascertained in the nick of time, unlike 
the remaining four, defined by (9), (11), (13), and (15). 

We are now in a position to preliminarily summarize the long quest 
for NAs in the class (1). We group together the ‘(–1)-jet’ (or nilpotent) 
components of the generators of the distribution, whose coefficients are 
given in the formulas (7), (10), (12), (14), and (16). That is, in the 
expansions for vector field generators X and Y, we only retain the terms 
of quasi-homogeneous weight –1 (cf. (3)), and leave out all terms having 
non-negative weights. This boils down, for each i = 8, 9, 10, 11, to leaving 
out, in the relevant expansion for ( ),izY  all terms of nonholonomic 

orders .iw≥  In the outcome l 1,= = ∂X X  while l =Y  

85
3
26

2
272752655443312 63

1
2 ∂





 





 ++++∂+∂+∂+∂+∂+∂ zzbzzbzzzzzzzz  

105
9
256

8
267

7
29

3
295

5
256

4
267

3
2 24

1
2
1

2
1 ∂





 ++++∂





 +++ zzCzzCzzzzzzBzzBzz  

.480
1

2
1

115
13
256

12
267

11
210

3
2 ∂





 ++++ zzDzzDzzzz  (17) 

What is more, an inspection of the simplifications done so far shows that 
the aggregated coefficients introduced in (17), 
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● ,6
5

3
1,66

1
65

bBbB +=+=  

● ,812
1,2

1
14472

1
7675 dbCdbC ++=++=  

● ,720
7

144
1,2

1
28801440

1
116115 dbDdbD ++=++=  

depend only on the technical parameter b, and not on the essential 
parameter c. The main difficulties in the proof of Theorem 2 are already 
overcome. 

4.2. Proof of Theorem 2, final refinements of the NAs 

The idea is to gradually replace the adapted z coordinates by more 

adapted ones, with the aim to strip the components of lY  of the variable 
,10z  then of ,9z  then ,7z  then .6z  And that last simplification, by 

miraculous if simple identities, will do! After it, there will be no free 

parameter whatsoever in lX  and l.Y  

One might note, however, that, in (17), the highest variable with b 
showing up in its coefficient is :6z  There is no parameter next to 

.,, 710 zz …  This notwithstanding, one has to start from eliminating 10z  

in l ( )11 ,zY  then 9z  in l ( )11zY  and l ( )10 ,zY  and so on downwards in 

indices. Otherwise, it would be more complicated to eventually get rid of 
some appearances of b. 

The improvements will always be quasi-homogeneous, so that (i) one 
will remain within the family of [sets of ] adapted coordinates, and (ii) 
there will be no need to look for the quasi-homogeneous ‘hat’ part of any 
improving diffeomorphism, which comes to fore in, mentioned already in 
the present note, Proposition 5.20 in [6].4 

                                                      
4In general, there is no way to know beforehand, if such a far-reaching final reduction 

is doable. Even within the Goursat world only – cf. the question of Agrachev from the year 
2000 in Section 1 – it is still open. In the unimodal class (1), in the end of the day, it is; in 
the unimodal class GGSGSGSG discussed in [21], it is as well. 
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To avoid cumbersome notations, we keep the same letters for the 
improved coordinates. 

So the first target is the 10
3
2zz  term in the 11∂  component in (17). To 

kill it, one takes a new adapted .8
1: 10

4
21111 zzzz −=  The 10

3
2zz  term 

disappears in the 11∂  component, but a 9
7
2zz  term comes instead in. And 

there is a 9
3
2zz  term in the 10∂  component. One kills the two latter by 

taking newer adapted 9
8
21111 128

1: zzzz +=  and .8
1: 9

4
21010 zzzz −=  At 

the expense of creating two ‘replacement’ terms with 7z  instead of 9z  

(the indices always decrease by the triangular property): 117
11
2 ∂zz  and 

.107
7
2 ∂zz  

After that second reduction, the highest variable present in lY  is ;7z  

it appears in the 891011 ,,, ∂∂∂∂  components. Then in the third 

reduction, by taking newer coordinates: 

● ,15360
1: 7

12
21111 zzzz −=  

● ,384
1: 7

8
21010 zzzz +=   

● ,8
1: 7

4
299 zzzz −=  

● ,2
1: 7

2
288 zzzz −=  

prompted by the outcome of the preceding reduction, one completely 
eliminates the terms with .7z  After this phase, the highest variable still 

present in lY  is .6z  In fact, 
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l 2 3
2 1 3 3 4 4 5 5 6 2 5 7 2 6 2 5 8

1
2 6
b bz z z z z z z z z z− = ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + + ∂ 
 

Y  

95
5
256

4
26 8

1 ∂




 





 −++ zzBzzB  

105
9
2556

8
266 384

1
8
1

8
1 ∂





 





 +−+





 −+ zzBCzzBC  

.15360
1

128
1

8
1

128
1

8
1

115
13
25556

12
2666 ∂





 





 −+−+





 +−+ zzBCDzzBCD  

(18) 

Eventually, one gets completely rid of 6z  by adding 

● an appropriate multiple of 6
13
2 zz  to ;11z  

● an appropriate multiple of 6
9
2zz  to ;10z  

● an appropriate multiple of 6
5
2zz  to ;9z  

● an appropriate multiple of 6
3
2zz  to .8z  

(The coefficients in these correction terms are all implied directly by 
(18).) 

The now highest variable is ;5z  it appears in lY  in the components 

11∂  through ;6∂  the components 7∂  and 6∂  have, besides, been 

unchanged in this last simplification. The only components of lY  that one 
has yet to ascertain are 11∂  down to .8∂  

It is quick with the coefficient standing next to :8∂  

.6
1

6
1

6 5
3
25

3
2 zzzzbb −=





 −+−  (19) 

And nearly as quick with the 9∂  coefficient: 

.40
1

6
5

3
1

5
1

8
1

66
1

5
5
25

5
2 zzzzbb −=





 





 +−−+  (20) 
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It is longer (and surprising) with the 10∂  coefficient: 



 ++++





 ++





 +++− 4884

1
14472

1
6
5

3
1

72
1

2442
1

812
1

9
1 bbbbb  

.3456
1

384
1

66
1

8
1

5
9
25

9
2 zzzzb =


+





 +−  (21) 

And it is nothing short of astounding with the 11∂  coefficient: 






 +−





 ++++





 ++


− 6

5
3
1

1664
1

2442
1

812
1

104
1

720
7

144
1

13
1

11
bbbdb  






 ++





 +++−+++ 66

1
128

1
4884

1
14472

1
8
1

2
1

28801440
1

11
bbbdb  

.199680
1

15360
1

5
13
25

13
2 zzzz −=


−  (22) 

Summarizing now, we have passed from the presentation (18) featuring 

parameter(s) to l 1,= ∂X  and 

l 3 5
2 1 3 3 4 4 5 5 6 2 5 7 2 5 8 2 5 9

1 1
6 40z z z z z z z z z z= ∂ + ∂ + ∂ + ∂ + ∂ + ∂ − ∂ − ∂Y  

.199680
1

3456
1

115
13
2105

9
2 ∂−∂+ zzzz  (23) 

All the NAs under consideration have turned out to be mutually 
equivalent as distribution germs. The parameters b and c concealing the 
modulus of the local classification of distributions D have disappeared 
(the latter, c, still in Subsection 4.1). The proof of Theorem 2 is now 
complete. 

4.3. The class GGGSGSGGG is not strongly nilpotent 

Theorem 3. At every point p in the class GGGSGSGGG, the 

distribution D is not locally equivalent to [its NA] lD  computed at p. That 
is to say, every point in this class is not strongly nilpotent in the sense of 
[18] and [20]. 
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A short proof will be ideologically similar to the one in [21]. We work 

locally around a point p and assume lD  at p to be already in the form 
(23). We will simplify this presentation still further, reducing the number 
of actively used (always adapted!) coordinates to just two: 1z  and .2z  

In order to leave the variable 5z  out in (23), one refines each of the 

actual coordinates 11z  through 6z  by adding to it a multiple of the 

product of 5z  and an appropriate power of .2z  The price for this is a 4z  

coordinate in each of the components 5∂  through ,11∂  and a by one 

higher power of the coordinate 2z  standing next to it in that component 

(remember that 154 −= ww ). 

Then one likewise gets rid of ,4z  replacing it everywhere by 3z  and 

raising the exponents of the relevant near-by 2z ’s by one ( ).143 −= ww  

In the end, all single 3z ’s are being replaced by single 1z ’s, together 

with one more rise by one in the exponents of the near-by 2z ’s 

( ).131 −= ww  

In the result of these corrections, the first nilpotent generator l 1= ∂X  

is not changed, while a straightforward count of coefficients yields the 
second generator in the form: 

l 2 3 4 6
2 1 3 1 2 4 1 2 5 1 2 6 1 2 7 1 2 8

1 1 1 1
2 6 24 720z z z z z z z z z z z= ∂ + ∂ − ∂ + ∂ − ∂ − ∂ + ∂Y  

8 12 16
1 2 9 1 2 10 1 2 11

1 1 1 .13440 4561920 670924800z z z z z z+ ∂ − ∂ + ∂  

After a standard rescaling of variables 4z  through ( ,: 4411 zzz −=  

)etc.,6:,2: 6655 zzzz −==  it is possible to go one (aesthetically only) 

better: l 1,= = ∂X X  and 

l 2 3 4 6 8
2 1 3 1 2 4 1 2 5 1 2 6 1 2 7 1 2 8 1 2 9z z z z z z z z z z z z z= ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂Y  

12 16
1 2 10 1 2 11.z z z z+ ∂ + ∂  (24) 
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The absence of strong nilpotency is now behind the corner. Indeed, two of 

consequences of (24) read: every Lie monomial over lX  and lY  of length 
( #=  of factors) at least two 

1. has no 21, ∂∂  components; 

2. is a vector-valued polynomial in ., 21 zz  

Hence the Lie product of any two such monomials is zero. This 

implies that the big flag of ( l l ),X Y  coincides identically with the small 

one! In particular, the big growth vector of ( l l ),X Y  at 110 R∈  is equal to 

its small one at .0 11R∈  That is, to the sgrv of D at the considered point 

[ ]11,10,9,8,7,6,5,4,3,2: 4422p  (Proposition 2). lD  is, therefore, very 

far from being a Goursat germ, and p assuredly is not a strongly 
nilpotent point. Theorem 3 is proved. 

Remark. The final refinements of adapted variables which lead to 
description (24) may be compared with the simplifications in [21], in 
Subsections 5.4 and 5.5 there. (Reiterating, the latter concerned the 
absence of a modulus in the NAs of the class GGSGSGSG, the only 
geometric class in length 8 in which a Goursat modulus has been 
identified to-date; see Remark 3 in [16] for a justification of that modulus. 
Reiterating also, the length 8 was minimal possible.) In that earlier 
study, there occurred, in the simplifications, instances of so-called 
‘nilpotent flatness’. A la limite, that strange flatness was then 
responsible for the disappearing of the modulus in passing to the NA. 

A similar kind of nilpotent flatness has played off, on several 
occasions, in the present proof, too. Each initial refining of linearly 

adapted coordinates: firstly ,1x  then ,4x  then ,3x  and eventually 2x  

was greatly facilitated by the matching of certain pair of coefficients, 
allowing for a single relevant correction term. See in this respect (9), (11), 
(13), and (15). Therefore, the proof in the class (1) appears to be nearly as 
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surprising as the (pioneering) one in [21]. Apparently, a deeper general 
machinery is at work, here and elsewhere. One now starts to believe in a 
general negative answer to the Agrachev 2000 question. 

This also supports a longstanding conjecture, most clearly formulated 
on page 260 in [18], that, for the Goursat flags, only tangential points are 
strongly nilpotent. (The stratum (1) comprises uniquely non-tangential 
points.) 

5. Extending the Issue to Classes 3,SGSGG 3 >kk  

The class (1) is the first in a series of codimension two unimodal 

classes 3,SGSGG 3 ≥= kk
kC  discussed in Theorem 2 in [19]. (As for the 

class ,SGSGG 32  it is still simple in Arnold’s sense, cf. Subsection 4.2 in 

[19].) Kumpera-Ruiz visualizations similar to (4) exist for each ,3≥k  

always with two real parameters in them concealing a single invariant, 
very much like for .3=k  

To answer Agrachev’s question in the classes kC  for ,3>k  one 

should 

1. improve Kumpera-Ruiz coordinates to linearly adapted ones; 

2. further improve linearly adapted to adapted, this time working 
with 8+k  variables and their weights being now: ,8,6,5,4,3,2,1,1  

1,,2,1,410,10 −=+ k…ll  (and still having the parameters in many a 

place); 

3. having the (–1)-jet of the distribution expressed in the adapted 
coordinates from point 2., try to ‘squeeze the parameters out’ of that jet. 

The point 3. critically depends on the result of point 2. At present, we 
do not know whether there is enough of that strange computational 
flatness, discovered in ,3C  in each given class .3, >kkC  That is, if, in 

the production process of adapted coordinates, there occur sufficiently 
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many perfect matchings in pairs of coefficients, allowing for a 
containment of parameters, as it has been the case in 3C  in the process of 

improving the coordinates .,,, 2341 xxxx  

The question is purely algorithmic, but the confirming computations 
have been done (in the present work) only for .3=k  It is not yet done for 

.4≥k  Most likely, one additional simplification still on the level of 
Kumpera-Ruiz coordinates (Section 3 in [19]) could come in handy. 
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